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ABSTRACT

In this work, we introduce a new method for gesture recognition
by combining image/video processing and machine learning meth-
ods. Inspired by previous work in the heavily studied field of gesture
recognition, we focus on robust and efficient methods that achieve
single-hand gesture recognition and propose to easily extend this
system to more complex actions and backgrounds. The steps of
our method can be summarized to Kalman motion detection, unsu-
pervised color clustering, feature extraction and SVM classification.
Our contribution is to achieve single-hand gesture recognition which
can be applied to any static camera without the need for any special
devices such as a Kinect device [1] or motion sensors [2].

Index Terms— single-hand gesture recognition, Kalman filter-
ing, k-means color clustering, SVM classification, HoG features

1. INTRODUCTION

Gesture recognition can be defined as the process of analyzing and
understanding meaningful movements of the hands, arms and face
of humans. In particular, the field of hand-gesture recognition has
emerged as a promising research area along with the development
of visual devices, image/video processing techniques and machine
learning techniques. Admittedly, there has been a lot of work in
the field (see [3] and [4] for some interesting surveys) and more
and more sophisticated models have been proposed. The focus of
this work is not to do an exhaustive literature survey so we briefly
mention some notable work on this field. For example, Stenger et
al. [5] used a hierarchical bayesian filter for hand tracking by using
a 3D hand model. Hidden Markov models have also been broadly
used in similar tasks like american sign language recognition [6].
Alternatively, skin segmentation methods coupled with an active
learning scheme were discussed in [7]. Most approaches have to
deal with illumination variations, complex backgrounds and occlu-
sions as well as the different hand postures and poses.

In this work we develop and combine new techniques in the
field of hand gesture recognition. We are defining single-hand ges-
ture recognition as our field of work which can be used in many
human computer interaction (HCI) applications. We exploit both
image/video processing and machine learning techniques to develop
a unified recognition system. Our fundamental assumption is that
the hand motion is the predominant one, thus we perform a motion
detection step in order to limit the region around the hand. Instead of
applying some simple background subtraction technique [8], we use
the Kalman filter [9] to achieve robustness. For example, in [10] a
Kalman filter formulation is proposed, providing the robustness for
optical user motion tracking. The Kalman filter that we use in our
algorithm outputs a bounding box surrounding the hand by track-
ing the hand motion. Then, we isolate the target (i.e. the hand) by

Fig. 1: Overview of the proposed gesture recognition system

perform a k-means clustering step based on the Lab colorspace. As
usual, we perform some hand mask post-correction steps and then
extract HoG features. Finally, we train and test a Support Vector
Machine (SVM) classifier using the extracted features to perform
our gesture recognition step. Section 2 describes the details of the
motion prediction and section 3 discusses the gesture extraction step.
In Section 4 we talk about our classification step and sections 5 and
6 discuss computational aspects and some future work respectively.

2. MOTION DETECTION USING KALMAN FILTER

Our first step in this method, is to apply motion detection by de-
veloping a Kalman filter implementation. The Kalman motion
detection has the purpose of constraining post processing region to
increase the accuracy of the post processes such as k-means cluster-
ing, hand extraction and SVM classification by capturing only the
largest motion area, which is assumed to be the region of a hand
motion, and then the spacial information of this region is sent to the
post processes in the form of bounding box. The role of this Kalman
filter in our method is very important as it can possibly eliminate
false positives in a video frame by limiting the region only around
the hand and this increases the robustness of our system as a whole.
In addition, this extraction step uses this spacial information from
the filter to accurately distinguish the most likely-hand cluster.

The Kalman filter is essentially a set of mathematical equations,
which implement a predictor-updater type estimator. The Kalman
motion detection algorithm is shown in Fig. 2. This method is often
considered as optimal in the sense that it minimizes the estimated
error covariance. This filter also coincides well with the implemen-
tation of real-time gesture detection as it only needs to keep 1-time
previous data. TheN×1 state vector xk contains the information of
x and y centroid, and width and height of the motion range at time k



Fig. 2: Motion estimation using Kalman filtering

(N = 4 in our case). This state vector and measurement zk can be
modeled as:

xk+1 = Axk +wk (1)
zk = Hxk + vk (2)

where A is the N × N state transition matrix of the process from
the state at k to the state at k + 1 and is assumed stationary over
time. We set A as an identity matrix in our simulation assuming the
little change of the hand position over time. Also, wk is the N × 1
vector of the associated white noise process with known covariance,
and H is the N ×N transformation matrix that maps the state vec-
tor parameters into the measurement domain. We also set H as an
identify matrix assuming that the difference between zk and xk only
comes from vk, and vk is the N × 1 vector of the associated mea-
surement error. Based on (1) and (2), we model our motion detection
process using the Kalman filter and the prediction part of equations
are represented as

Pk|k−1 = APk−1|k−1A
> +Q (3)

x̂k|k−1 = Ax̂k−1|k−1 (4)
where x̂k|k means the updated state estimate at time k and x̂k|k−1 is
the predicted state estimate at time k with the information of motion
centroid and range. Q is the N × N covariance matrix of wk. In
our simulation, we assume that Q is a time-invariant and diagonal
matrix with small values and it shows robustness of the filter perfor-
mance for the videos where hand-motion dominance assumption is
satisfied. Note that Pk|k is the mean squared error of xk with x̂k|k
and Pk|k−1 is that of xk with x̂k|k−1 i.e.

Pk|k = E[eke
>
k ] = E[(xk − x̂k|k)(xk − x̂k|k)

>] (5)

Pk|k−1 = E[eke
>
k ] = E[(xk − x̂k|k−1)(xk − x̂k|k−1)

>] (6)

The results of the prediction process are fed back to the update
part of the Kalman motion detection process using the Kalman filter
and it is calculated as follows

Kk = Pk|k−1(HPk|k−1H
>) +R)−1 (7)

x̂k|k = x̂k|k−1 +Kk(zk −Hx̂k|k−1) (8)
Pk|k = (I −KkH)Pk|k−1 (9)

where R is the N × N covariance matrix of vk and we assume
that it has small valued elements and we set the values based on
some empirical results in our simulation. Kk is the Kalman gain,
which minimizes Pk|k. We use the updated state vector x̂k|k as our
detection result forming a bounding box to constrain the processing
region for eliminating false positives and increasing the accuracy of
the following processes.

Fig. 3: Two Approaches of Background Calculation

In practice, to predict and update the state estimate, we need an
accurate measurement zk, and we propose a simple way of getting
the measurement. We capture the difference between a reference
frame and a current frame at time k in pixel-wise and we call the ref-
erence frame as background, i.e. based on a threshold, we calculate
the difference between the background frame and the current frame
in each color dimension. If the difference is more than the thresh-
old we set, it will get 1, otherwise 0 and we do entry-wise binary
operation (OR) for all color dimension. As a result, all the 1-valued
clusters represent motions in a frame, and we pick the largest cluster
as the most likely-hand cluster and use it as the measurement zk.
When it comes to colorspace, we use the Lab colorspace instead of
RGB colorspace without using L channel since we found the fact
that luminance can easily deteriorate the accuracy of this measuring
process. As an example, we mention the possible variations in the
number of photons captured by the webcam. Thus, we only use a and
b channel to compare the background and the current frame with the
threshold of 350 in our simulation. This threshold can be adaptively
set with respect to the color of the background. In other words, if the
background has severe brightness condition or color similarity with
a hand, then the threshold needs to be low to capture an accurate
motion region and vice versa.

To obtain the background, we use two different approaches and
the two approaches are shown in the Fig. 3. In the first case, we com-
pute the background only once by averaging of the first N frames in
the video sequence and the background frame is commonly used for
the rest of the frames. The immediate advantage of this approach is
that it takes small computational resources. However, even a small
perturbation of the camera immediately implies that this reference
frame is likely to lose its properties (since it no longer corresponds
to the background of new frames coming after this movement) so
the quality of measurement will get deteriorated. Therefore, we pro-
pose a different approach according to which we create the sliding
window of length N , i.e. we keep updating the background by aver-
aging the previous N frames from a current frame. As a result, this
measuring process can deal with the change of background caused
by normal user movement like walking, rotating the camera and
zooming in or out. The main drawbacks of this choice are twofold:
it takes more computational time as it averages N frames for each
newly incoming frame and this could slow down our method, and
if a user makes little or no movement over time, the measuring will
fail since it will take the hand as the part of background. Given that
the solution for this problem is to increaseN at the expense of speed
once again, we propose a principled choice: for static environments
where there is no change of background, we use the first approach
and conversely, for the environment were the background possibly
changes, we use the second option using a small N (say 20), so that
we can accommodate for this dynamic motion environment.



Fig. 4: Kalman motion detection for 3 frames, where the blue bounding box
is the prediction and the red one is the actual

3. GESTURE DETECTION AND MASK EXTRACTION

Given the Kalman bounding box region, our next step is to accu-
rately isolate the hand region by exploiting the differences between
skin color and its background. To do so, we employ a color cluster-
ing on a pixel basis. We know in advance that very simple and fast
methods like thresholding and using gray scale or RGB values will
typically fail, but at the same time our goal is to employ a real-time
technique. In order to balance between these two factors, we employ
a k-means clustering on the perceptually uniform Lab colorspace by
removing the L component, which represents brightness. As a result,
the pixel-wise clustering will be robust to illumination changes and
will lay more emphasis on the actual color of objects. For example,
Fig. 5 shows an interesting result when one uses only the a and b
channels from the Lab colorspace instead of the raw RGB values.
Notice the illumination effect in the user’s face in the direction of
the light when using RGB values. In contrast, using only a and b
values succeeds in classifying the human face and hand in the same
cluster (gray) by excluding other non-skin objects (black or white).

We now give a very brief description of the k-means algorithm
so that the description of our method is self-contained. Given a set of
observations X = {x1,x2, . . .xn},xi ∈ Rd, we want to partition
them into k (<= n) clusters S = S1, S2, . . . , Sc so as to mini-
mize the within-cluster sum of squares. In other words, the k-means
algorithm is expressed as:

argmin
S

k∑
i=1

∑
xj∈Si

‖xj − µi‖2 (10)

In practice, we alternate between two steps the assignment step and
the update step similarly to the EM algorithm. The update step
computes the cluster centers given cluster memberships and the
assignment step assigns every point to the cluster whose center is
closer to in the euclidean sense. Note that we start the whole itera-
tive process by simply randomizing cluster centers and repeating the
two steps for 100 iterations.

Choosing the right number of clusters in k-means is applica-
tion dependent and so we experimented with some small values for
k ∈ {2 . . . 4}. We picked k = 2, since we could observe better
results for this value. Note that that the k-means is an unsuper-
vised method and hence we cannot know which of the resulting
two classes is actually the hand region that we wish to extract.
We note that color classification is a possible solution as shown in
Fig. 6 where we can see that since large a and b values represent
skin regions we can classify the red points (skin) vs the blue ones
(non-skin). However, we note that this experiment was carried
out in a relatively constrained lightning environment and such an
observation will not generalize. Instead of performing some color

Fig. 5: k-means for RGB vs. Lab values after removing L channel, k = 3

classification using skin cluster centers, we further assume that the
hand region is the one that is central to the bounding box we got
from the Kalman filtering.This observation is in agreement with our
original assumption i.e. motion is mostly due to hand motion and,
as a result, the Kalman filter will be giving a bounding box which
is likely to be located mostly around the hand region. To do so, we
compute the average distance (i.e. divided by each region’s size) be-
tween every point and the bounding box’s center. The compactness
of the hand region and the size invariance of our distance metric
ensure that the region that has the smallest sum of average distances
is the hand one. We also note that we originally used the distances
between every point and its respective region center as a decision
criteria which proved to be inaccurate for compact backgrounds.

Fig. 6: Cluster centers using our training image dataset

Furthermore, we propose to address some of the drawbacks of
the k-means method (e.g. sensitivity to initialization and number
of iterations to converge), by replicating some k-means instances
for a small number of iterations and picking the best one, i.e. the
one that produces the smaller sum of distances. In practice, this
was computationally trivial and relatively unimportant since we did
not note a big difference in the extraction results, mainly due to the
constrained region that the k-means is applied to. We also need to
account for false registrations in the resulting Kalman box, i.e. we
should refine the bounding box by keeping only the main connected
component in the resulting region by assuming that this compo-



Fig. 7: HoG features for 9 orientations, cell size 8 and 16 respectively, origi-
nal image resized for display

nent will correspond to the hand region. As a result, we perform a
largest connected component analysis and set other components to
zero. This proved very important when the user’s hand was close
to his head or there were some skin colored objects even inside this
smaller region, since we could now remove them efficiently. As a
further step to our gesture recognition system, we effectively impose
a spatial regularity by a morphological filling procedure to remove
holes from the hand region. Applying morphological opening and
closing using a small structuring element is widely used in many
other methods that rely on the extracted mask. In our case, we
considered this to be less important since we are relying on the HoG
features (see next section).

4. GESTURE CLASSIFICATION

After extracting the hand region we apply a uniform background
on every test frame and then perform gesture classification. Sup-
port Vector Machines have gained a lot of popularity as supervised
learning classifiers. In this work, we used the LibSVM [11] library
to train and test our system. Luckily, LibSVM supports multi-
class classification using the well-known ones vs. all method. For
every image (training or testing) we apply feature extraction on
the grayscale versions of every test frame. We used Histogram of
oriented Gradients (HoG) features [12] which are broadly used in
object detection tasks with a cell size of 16 by 16. This type of
features captures gray image gradients in different orientations after
performing a histogram binning scheme across small image cells. A
key point of the HoG features computation is that gradient strength
normalization is performed locally which reduces the effect of il-
lumination and contrast.We then trained our training model offline
using a radial basis function (RBF) kernel to perform non-linear
classification where the soft margin parameter C and the scaling pa-
rameter γ = 4e−04 were set using a 5-fold cross validation scheme
on a relatively large search grid. The training dataset included 747
images captured manually using an Iphone 5S device and resized to
match the laptop’s webcam resolution that we used.

We used a set of 6 different labels from 0 to 5 denoting different
single hand gestures, as shown in Fig. 8. Our dataset includes 5
different subjects performing these gestures under different scaling,
orientation and illumination conditions, so that we can more accu-
rately capture these variations in the testing scheme. We ensured
that all labels are fairly represented in the training dataset and that
different hand sizes are also accommodated. All features were nor-
malized using their Z scores before being fed to the classifier. Our
test frames were of varying size (equal to the size of the Kalman
bounding box) whereas our training images were 164 × 123. As
a result, we experimented on two different approaches. The first
one was to simply resize the test frames to match them with the
training ones, so that our features are of constant size. Despite the

Fig. 8: Representative training images

underlying scaling of our features and the fact that HoG is not scale
invariant, we produced good classification results, because of our
normalization scheme and since the resizing factor was most of the
times not very large. Our second approach was to use SIFT [13]
features instead of HoG combined with a Bag of Words (BOW)
model and a vector quantization (VQ) step [14]. Briefly speaking,
this method aims to keep the strongest features in the data and then
build a vocabulary of 500 codewords where every feature is being
assigned to. Then, the final feature vector is the histogram of values
for this codebook. As usual, we removed outlier images from our
training dataset and partitioned it randomly to 30% training and
70% validation to measure the offline accuracy. Unfortunately, this
approach worked nicely only in this offline procedure. We believe
that this is due to some imperfection in how our VQ actually can
capture these variations for the test frames. Due to time constraints,
we leave this investigation for future work.

Some experimental results can be seen in Fig. 9. Note that since
the Kalman motion detection step reduces the area that we are feed-
ing to the k-means and the SVM classifier, we can still get fine re-
sults even for complex backgrounds with multiple skin-colored ob-
jects, such as other people’s face or hands. Our underlying assump-
tions are that no extreme lightning or sharp motions take place which
can be thought of as a limitation to our work. However, even when
these severe conditions are present, our method (despite its simplic-
ity) partially accounts for them. For example, say that some big
motion takes place in the background, like a person walking behind
the user. Then, the Kalman motion detection will detect this motion
and the gesture recognition will fail. However, given that this motion
does not persist in the background we only need to wait for the back-
ground stack to get rid of this effect and then the user can continue
to use the system. In addition, lightning conditions can be addressed
effectively by modifying the thresholding parameter as mentioned
before.

5. COMPUTATIONAL ASPECTS

Our main goal is to apply this recognition system in real-time. The
main bottlenecks of our system are the slow processing power of the
Matlab software implementation that we used. Although we have
written most of the project in OpenCV using C++, due to time con-
straints we do not present final results using it. However, our al-
gorithmic steps are easy to implement in all programming environ-
ments, like an Android application. We note that there is a time



Fig. 9: Test frames and their classification labels

lag between two consecutive frames i.e frame processing lag and
Kalman background computation lag. As a result, we do not capture
frames at the webcam’s maximum frame rate. In real-life applica-
tions, we have to take this effect into account since the hand motion
is continuous hence a real-time frame processing must be in place.
Fortunately, our experiments in OpenCV showed that this effect is
dependent on the slow high-level programming nature of Matlab and
thus can be addressed effectively.

6. CONCLUSION

In this project we introduced a novel method to detect, extract and
classify single hand gestures. We focused on developing new ideas
that can effectively address illumination effects, hand shape and
size variations. For this reason, we exploited the robustness of the
Kalman filtering, the speed and efficiency of the k-means cluster-
ing and the effectiveness of HoG features with an SVM classifier.
We created a single hand gesture dataset that can capture most
variations in real life scenarios, such as rigid transformations and
lightning conditions. However, we still need to further improve
our system in terms of background complexity and classification
accuracy. We propose further investigation on how to improve our
features using SIFT combined with the VQ method. In addition,
a full OpenCV implementation will further exploit the merits of
our work and make an Android application a natural step further.
Finally, we intend to include an extended set of single hand gestures
which express a wider set of actions.
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