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ABSTRACT

In this paper, we explore the image segmentation task using a graph
clustering approach. We formulate this clustering as a diffusion
scheme whose steady state is determined by the Random Walker
(RW) method. Then, we discover the equivalence of this diffusion
with the Susceptible - Infected - Recovered (SIR) model, a well-
studied epidemic propagation model. We further argue that using a
Region Adjacency Graph (RAG) exploits the clustering properties
and leads to a dimensionality reduction. Finally, we propose a novel
method called Normalized Random Walker (NRW) algorithm which
extends the RW method. Qualitative and quantitative experiments
validate the efficiency and robustness of our method, with respect to
parameter tuning, seed quality and location.

Index Terms— graph clustering, Random Walker, SIR epi-
demic propagation model, diffusion modeling, image segmentation

1. INTRODUCTION

Image segmentation is broadly studied in image analysis and com-
puter vision and provides useful information for various applica-
tions, such as object detection or image retrieval. Lately, there has
been an increased interest for graph-based methods where the image
is being treated as a graph with nodes placed in every pixel or region.
Some well-known methods have proposed energy minimization us-
ing an eigenvalue problem solution [22] or a graph cut solution via
a max-flow algorithm [4]. In [13], Grady proposed the Random
Walker (RW) method, which was further extended and developed
thereafter for various applications, as in [8], [31], [20] and [11].

In this work, we propose an improvement of the RW by ex-
ploring the underlying diffusion schemes and discovering a novel
connection with the SIR model. In Section 2, we make all the defi-
nitions used throughout this work. In Section 3, we briefly describe
the RW method and in Section 4 we describe the SIR model and
prove its connection with the RW method. Then, Section 5 proposes
the Normalized Random Walker (NRW) method, whereas Section 6
discusses the need of using an image-driven graph (RAG) instead of
a regular grid. Finally, Section 7 presents and discusses our experi-
mental results and Section 8 summarizes the important conclusions.

2. BACKGROUND

LetG = (V,E) denote a graph consisting of a set of vertices (nodes)
υ ∈ V and a set of edges e ∈ E ⊆ V × V . In addition, an edge
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eij denotes an edge spanning two vertices υi and υj . In order to
represent node similarity we use a weighted version of G by defin-
ing non-negative weights wij between nodes i and j. Similarly, the
degree of node i is di =

∑
j∼i

wij , where ∼ denotes that i and j are

adjacent. In addition, we define the weight matrix W = [wij ] and
the degree matrix D = diag(d1, . . . , dn), where n = |V | . We also
assume that G is connected and undirected (wij = wji).

The construction of the weight matrix W is an important step
for the final segmentation. In most cases, a Gaussian kernel with
parameter σ is used:

wij =

 exp

[
−
(‖gi − gj‖2

σ

)2]
, if j ∼ i

0, else
(1)

where gi is the feature vector (e.g. a 3-D RGB vector) for node i.
Other weighting factors were studied in [12], [16].

3. RANDOM WALKER

In [13], Grady proposed the RW algorithm, where the user in-
puts a set of seeds, each belonging to a set of Ns possible labels
{si}, i = 1, . . . , Ns. This set of marked pixels is then used to
extract the desired object boundaries. The final segmentation is in-
terpreted as the most probable label s of each node, i.e. which type
of seed is the most probable final destination for a random walker
who starts his trip from every unmarked node. According to [13],
the direct solution of the random walker’s probabilities with respect
to all unmarked nodes, is computationally intractable. Instead, one
may solve the relevant Dirichlet problem (also known as combinato-
rial Dirichlet integral for graph applications) [7], [10] and apply the
RW algorithm. We now briefly describe the algorithm. Suppose L
is the unnormalized graph Laplacian [13]:

L = D −W = [lij ] =

{
di, if i = j
−wij , if j ∼ i
0, else

(2)

Then the minimization of J(x), where

J(x) =
1

2

N∑
i,j=1

wij

(
xi − xj

)2
=

1

2
x>Lx (3)

given the constraints (seed locations) encoded in x = [xi], provides
the solution. To effectively minimize J , one must solve a set of linear
systems. Finally, for every unmarked node, one picks the label that
corresponds to the maximum probability. An interesting property
that arises when minimizing J is that the resulting probabilities are
well-defined, i.e. for every node the sum across all labels is 1. More
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importantly, the RW algorithm is directly related to the steady state

of the heat diffusion equation [13], [27]:
du

dt
= ∇2u.

There have been many extensions to the RW algorithm. As an
example in [14], prior models were introduced to effectively detect
object parts that are not connected to a seed. Also, the use of fil-
terbank features have been proposed in [3] for texture segmentation.
Finally, the use of an over-segmentation step to effectively decrease
the number of nodes was studied in [18], [23] and pre-computation
techniques were used in [2] to achieve a computational speedup.

As with most seeded segmentation methods, RW is sensitive
to initial seed location, number and quality when the human factor
introduces incorrect initial seeds (outliers) due to lack of expertise or
concentration. There has been some work on intelligent seed choice
with interesting results [26]. Parameter tuning is also an important
aspect, since prior knowledge of σ is usually unavailable and can
vary from image to image. Searching for an optimal σ iteratively or
computing it explicitly [12] usually adds computational time.

4. SIR MODEL

The diffusive nature of the RW can be thought of as the evolution
of heat flowing in a graph [27] or as a label propagation effect for
graph-based learning applications [25], [30]. Alternatively, one can
consider this diffusion as a propagation of infection waves originat-
ing from “breakout” points. These infection waves travel through a
network of nodes or people according to node similarity: nodes that
are strongly connected should influence one another at a higher rate
compared to those weakly connected. A real life analog could be
that friendships among members of a community share more expe-
riences and are more prone to be infected from someone they spend
more time with, use the same objects, etc.

A well-known model for the evolution of such an epidemic
spread is the Susceptible - Infected - Recovered (SIR) model [15],
[21]. According to [21], it is a model describing the infection spread
on stationary people (nodes) belonging in a fixed size community.
This community consists of three compartments: those who are
susceptible (S) to an infection, those already infected (I) and those
who recovered from it after infection (R). Also, the community is
represented by a regular grid of 4 neighbors for each person. Let
I(x, y) denote the probability of a person in location (x, y) to be
infected and S(x, y) the probability of being susceptible. Then, this
evolution can be expressed through the following equation:

∆I(x, y) =
k

4
S(x, y)(4I(x, y) + a2∇2I(x, y))∆t (4)

where ∆I is the increase of I(x, y) per time step ∆t, k is the rate
of influence for all of this person’s neighbors and a is the distance
between every person and its neighbor in the community.

We reformulate this model to accommodate our work and prove
that the SIR model is equivalent to the following diffusion model1:

Ii,t+1 = Ii,t +
∑
j ∼ i

∂jIi,t (5)

where i, j denote the respective nodes, t is the iteration index and
∂jIi,t = wij(Ij,t − Ii,t). We define Ii,t to be the corresponding
infection probability of node i at time step t, which is increased by
∆Ii,t during each time step. We normalize time steps (∆t = 1),
omit the compartment R and consider all nodes to be equally sus-
ceptible to all infections regardless of their location and time, since
we only care about infection waves and their superiority over each

1The steady state for this evolution is identical to the RW solution, since
the SIR model belongs to the class of local mean field models [21].

node. To model node similarity we replace
k

4
with

wij

di
, i.e. we

average node similarity between i and j. In order to reach a well-
defined steady state (4) needs to be reformulated. In other words, the
steady state corresponds to ∆Ii = 0, i.e. we are no longer updating
infection probabilities at any node i centered at location (x, y). By
making use of the harmonic property [27], we redefine (4) as

∆Ii,t =
∑
j ∼ i

wij(Ij,t − Ii,t) =
∑
j ∼ i

wijIj,t − Ii,tdi (6)

Then, we get (5) from (6) and the fact that ∆Ii,t = Ii,t+1 − Ii,t.

5. NORMALIZED RANDOM WALKER

By carefully analyzing (5), we can observe that the degree of the
nodes is not taken into account when computing the edge deriva-
tive. However, this would not be natural in a real-life example: the
number of neighbors each person has influences the local infection
profile. Suppose that A has 2 friends, B and C. Also, suppose that
both of them are equally friends to A, but B has more friends than C.
Then, B will influence more A’ s infection profile. In other words,
the probability of a node’s infection is related to its degree and that
of his neighbors. We propose to incorporate degree terms to satisfy
this observation. Denote the normalized graph Laplacian [28], [29]
by L̃ = D−

1
2 (D −W )D−

1
2 = [l̃ij ], where

l̃ij =


1, if i = j

− wij√
didj

, if j ∼ i

0, else

(7)

We also define the normalized derivative over edge eij as

∂jIi,t =
wij√
di

(
Ij,t√
dj
− Ii,t√

di

)
(8)

Then, by plugging (8) to (5) we can define a new steady state
which (by following the same steps as before) minimizes Jn(x), a
normalized version of J(x), where

Jn(x) =
1

2

N∑
i,j=1

wij

( xi√
di
− xj√

dj

)2
(9)

We can now minimize Jn(x) by solving a similar set of linear
systems as in the traditional algorithm. In fact, we omit the con-
straints that were present in the original idea: we relax the resulting
probabilities to non-negative numbers which reveal the certainty of
each label without satisfying the maximum principle. As a result,
all Ns linear systems (or infections present) have to be solved. In
the RW method we only solve Ns − 1 systems since the transition
probabilities sum to 1.

6. REGION ADJACENCY GRAPH FOR CLUSTERING

Instead of applying our algorithm on a pixel level (regular grid),
we propose to extend our method to a Region Adjacency Graph
(RAG - [23]). In other words, we can use any over-segmentation
technique (such as watershed transformation - [19]) and therefore
obtain a set of n regions R1, R2, ..., Rn which are now represented
by a node i, located at the geometric mean hi of Ri and whose
feature vector is gi, i.e. the mean feature vector for all pixels in Ri.
Consequently, we can greatly reduce the problem’s dimensionality.
We also prefer the node-level approach, since it better approximates
real-life situations, where the number of friends or neighbors for
each person is free of spatial regularity. We also note that in this
case the degree of each node will be more accurately depicting the
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relationship between adjacent regions, thus capturing the internal
structure more accurately. A drawback of the RAG is that we need
to interpret the initial seeds in terms of their corresponding nodes. A
good approximation is to assign each seed’s label to the node closest
to the seed’s pixel, by assuming that the user will not input any seeds
very close to an object’s boundary. A more accurate (but slower)
approach would be to assign the seed’s label to the region or node
this pixel belongs to. Furthermore, to turn the node solution into
a pixel one, we have to assign all pixels in Ri to label si. Finally,
we deal with boundary pixels by assigning each one to the most
common label present with respect to this pixel’s eight neighbors. In
the quantitative results we use the node level solution for efficiency.

Fig. 1: Region Adjacency Graph (RAG)

7. EXPERIMENTAL RESULTS

In our experiments, we use the RAG version of the RW/NRW since
its arbitrary graph structure is heavily exploited by the degree term
of the NRW and demonstrates our graph clustering approach. Our
data consists of 24 images from the Berkeley dataset and 30 images
from the Grabcut Microsoft Research dataset. All images were
chosen so that a main object was present and a 2-seeds/infections
model would be applicable. We also used some other images from
the Berkeley dataset for a 3/4-seeds model for qualitative results.

Table 1: Graph-based segmentation F-scores: Berkeley Dataset

RW NRW LC GC

RGB
mean 0.7460 0.7767 0.7288 0.6673
std 0.1472 0.1399 0.1652 0.2614

Gray
mean 0.7264 0.7563 0.7215
std 0.1585 0.1489 0.1671

Luv
mean 0.7383 0.7791 0.7415
std 0.1455 0.1319 0.1584

Table 2: Graph-based segmentation F-scores: Grabcut Dataset

RW NRW LC GC

RGB
mean 0.5960 0.6554 0.5615 0.5531
std 0.1606 0.1548 0.1662 0.2490

Gray
mean 0.5875 0.6404 0.5593
std 0.1795 0.1688 0.1746

Luv
mean 0.5897 0.6664 0.5891
std 0.1545 0.1493 0.1674

According to Tables 1 and 2, the NRW produces better segmen-
tation results on average in both datasets. Using Luv features also
improved the final NRW average. The relative differences are more
important than the absolute values, since we are taking an average
over non-optimal values of σ, 10 different manual segmentations
and across all images of the respective image set. The standard
deviation for the NRW is smaller than the RW one which suggests
that the NRW is more robust. Initial seed points were manually
placed for all images in moderation. The σ parameter was chosen in
the [30, 150] interval, since for each image the optimal value varies.
We also used only color information to construct the weight matrix.
Finally, to produce the F-scores, we used ground truth masks of
the images and turned them into the respective node level solution.

Then, we calculated an approximated version of the F-scores using
the reference solution and the RW/NRW ones. In practice, this ap-
proximation was close enough to its pixel version and much faster.
For comparison reasons, we applied the methods from [9] (LC)
and [17] (GC) using the available codes. The LC pixel-level method
usually produces slightly lower results than the node-level RW. We
experimented with all graph-cut methods from [17] using default
parameters and k-means, where much better results were obtained
for many cases. However, leakage effects and seed number sensitiv-
ity led to large inter-image and intra-image variability. Results using
RGB only were available and we took an average over all methods
used in [17], since for these seeds we got similar results. Finally, we
used the GrowCut technique [24], but it produced poor results for the
same seed choices. Quantitative results are presented in Figs. 2, 3, 4.

Fig. 2: 2-seeds model, σ = 90, RW (left), NRW (right), graph clustering
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Fig. 3: green: NRW no RAG, red: RW no RAG, black: NRW with RAG and
blue: RW with RAG

Figure 2 shows the node solution on a CT image after apply-
ing the two methods. We define two types of seeds/infections (black
and pink dots), map them to nodes and perform clustering on the
resulting RAG using the RW and the NRW. Figure 3 shows that the
NRW adds a relatively small computational burden (compute D−

1
2

and perform multiplications) especially after using the RAG dimen-
sionality reduction. The advantage of the RAG is twofold: not only
it models more complex relations between pixels, but it also greatly
reduces the problem’s dimension. We note that using the RAG in
conjunction with our SIR analysis supports the theoretical merits of
using a normalized graph Laplacian [6].

8. CONCLUSIONS

In this work, we proposed a novel modification to the RW algo-
rithm. To do so, we considered the solution of the RW as the steady
state of infectious diseases propagating on an image-driven graph.
By carefully analyzing the SIR epidemic model, we discovered an
equivalence between these two approaches, which revealed the need
to incorporate degree terms to normalize over each infection’s prob-
ability. In practice, the NRW achieved better segmentation results in
many challenging occasions. Our ongoing and future work includes
investigating other superpixel methods to create RAGs (e.g. [1]),
using prior models [14] or using alternative features like texture.
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Fig. 4: Pixel level results (labels/boundaries) using the node solution. Column 1 is the original images with seeds as colored dots. Column 2 (rows 1-5) is the
RW, column 2 (row 6) is GC (the first one from [17]) where leakage effect is present and column 3 is the NRW. Rows 1, 2 and 3 present results for 2 and 3
types of seeds/infections. In row 4, outliers are introduced and the NRW locates both women better. Row 5 shows the boundaries in a 4-seeds model with a
much better result for the NRW. RW/NRW experiments use σ = 90 (except for column 3 - row 6 where σ = 30 is used). This figure is better seen in color.
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