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Recurrent and Dynamic Networks that Predict
Streaming Video Quality of Experience

Christos G. Bampis, Zhi Li, Ioannis Katsavounidis and Alan C. Bovik

Abstract—Streaming video services represent a very large
fraction of global bandwidth consumption. Due to the exploding
demands of mobile video streaming services coupled with lim-
ited bandwidth availability, video streams are often transmitted
through unreliable, low-bandwidth networks. This unavoidably
leads to two types of major streaming-related impairments:
compression artifacts and/or rebuffering events. In streaming
video applications, the human observer is the end-user; hence
being able to predict the subjective Quality of Experience (QoE)
associated with streamed videos could lead to the creation
of perceptually optimized resource allocation strategies driving
higher quality video streaming services.

We propose a variety of recurrent dynamic networks that con-
duct continuous-time subjective QoE prediction. By formulating
the problem as one of time series forecasting, we train a variety of
recurrent neural networks and non-linear autoregressive models
to predict QoE using several recently developed subjective QoE
databases. These models combine multiple, diverse network
inputs such as predicted video quality scores, rebuffering mea-
surements, and data related to memory and its effects on human
behavioral responses, using them to learn to predict QoE on video
streams impaired by both compression artifacts and rebuffering
events. Instead of finding a single time series prediction model, we
propose and evaluate ways of aggregating different models into a
forecasting ensemble that delivers improved results with reduced
forecasting variance. We also deploy appropriate new evaluation
metrics for comparing time series predictions in streaming
applications. Our experimental results demonstrate improved
prediction performance that approaches human performance.

Index Terms—subjective quality, objective quality, quality of
experience, video quality assessment, streaming video, rebuffer-
ing event

I. INTRODUCTION

V ideo data and mobile video streaming demands have sky-
rocketed in recent years [1]. Streaming content providers

such as Netflix, Hulu and Youtube strive to offer high quality
video content that is viewed by millions of subscribers under
very diverse circumstances, using a plethora of devices (smart-
phones, tablets and larger screens), under varying viewing
resolutions and network conditions. This enormous volume
of video data is transmitted over wired or wireless networks
that are inherently throughput limited. On the client side, the
available bandwidth may be volatile, leading to video playback
interruptions (rebuffering events) and/or dynamic rate changes.

These network-related video impairments adversely affect
end-user quality of experience (QoE) ubiquitously; hence
studying QoE has become a major priority of streaming video
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companies, network providers and video QoE researchers.
For example, to better account for fluctuating bandwidth
conditions, industry standard HTTP-based adaptive streaming
protocols have been developed [2]–[6] that divide streaming
video content into chunks (represented at various quality lev-
els); whereby the quality level (or representation) to be played
next is selected based on the estimated network condition
and/or buffer capacity. These adaptation algorithms seek to
reduce the frequency and number of rebuffering events, while
minimizing occurrences of low video quality and/or frequent
quality switches, all of which can significantly and adversely
affect viewer QoE.

In streaming video applications, the opinion of the human
viewer is the gold standard; hence integrating models of
perceptual video quality and other “QoE-aware” features into
resource allocation protocols is highly relevant. This requires
injecting principles of visual neuroscience and human behavior
modeling into the video data resource allocation strategies.
Systems that can make accurate real-time predictions of sub-
jective QoE could be used to create perceptually optimized
network allocation strategies that can mediate between volatile
network conditions and user satisfaction.

Here, we present a family of continuous-time streaming
video QoE prediction models that process inputs derived from
perceptual video quality algorithms, rebuffering-aware video
measurements and memory-related temporal data. Our major
contribution is to re-cast the continuous-time QoE prediction
problem as a time series forecasting problem. In the time series
literature, a wide variety of tools have been devised ranging
from linear ARMA models [7], [8] to non-linear approaches,
including artificial neural networks (ANNs). ARMA models
are easier to analyze; however they are based on stationar-
ity assumptions. However, subjective QoE is decidedly non-
stationary and is excited by dynamic QoE-related inputs, such
as sudden quality changes or playback interruptions. This
suggests that non-stationary models implemented as ANNs are
more suitable for performing QoE predictions.

We specifically focus on the most practical and pressing
problem: predicting continuous-time QoE by developing QoE
system models driven by a mixture of quality, rebuffering and
memory inputs to ANN-based dynamic networks. Building
on preliminary work in [9], [10], we advance progress to-
wards this goal by devising efficient QoE predictions engines
employing dynamic networks including recurrent neural net-
works, NARX [9], [10] and Hammerstein Wiener models [11],
[12]. We thoroughly test these models on a set of challenging
new subjective QoE datasets, and we conduct an in-depth
experimental analysis of model and variable selection. We



2

also study a variety of new ways of aggregating the time
series responses produced in parallel by different QoE models
and initializations into a single robust continuous-time QoE
estimate, and we provide demonstrations and guidance on the
advantages and shortcomings of evaluation metrics that might
be used to assess continuous time QoE prediction performance.
We also compare the abilities of our proposed models against
upper bounds on performance, i.e, human predictions.

The rest of this paper is organized as follows. Section II
studies previous work on video quality assessment and QoE,
while Section III discusses the design of our general QoE
predictor. Next, Section IV describes the proposed predictor
that we have deployed and experimented, and the comple-
mentary continuous-time inputs that feed it. In Section V
we introduce the forecasting ensemble approaches that are
used to augment performance, and in Section VI the various
QoE predictors that we designed are described. Section VII
explains the experimental setup and Section VIII describes
and analyzes our experimental results. Section IX concludes
with discussions regarding possible future improvements.

II. RELATED WORK

Ultimately, video QoE research aims to create QoE predic-
tion models that can efficiently address the resource allocation
problem while ensuring the visual satisfaction of users. As
such, QoE prediction models are designed and evaluated on
databases of QoE-impaired videos and associated human sub-
jective scores [13]–[18]. Recently developed QoE prediction
models can be conveniently divided into retrospective and
continuous-time QoE predictors.

Retrospective QoE prediction models output a single num-
ber which summarizes the overall QoE of an entire viewed
video. Many video quality assessment (VQA) models that only
measure visual distortions from, for example, compression or
packet loss fall into this category. VQA models are further
classified as full-reference (FR) [19]–[25], reduced-reference
(RR) [26] or no-reference (NR) [27]–[32], depending on
whether all or part of a pristine reference video is used in
the assessment process. Besides video quality degradations,
retrospective QoE is also affected by playback interruptions;
hence retrospective predictive models have been proposed
that compute global rebuffering-related features, such as the
number or durations of rebuffering events [33], [34]. Hybrid
approaches that model video quality degradations and rebuffer-
ing events have very recently been studied, resulting in models
like SQI [35] and the learning-based Video ATLAS [36].

Continuous-time QoE prediction has received much less
attention and is a more challenging problem. In [11], a
Hammerstein-Wiener dynamic model was used to make
continuous-time QoE predictions on videos afflicted only by
dynamic rate changes. In [10], it was shown that combining
video quality scores from several VQA models as inputs to
a non-linear autoregressive model, or simply averaging the
individual forecasts derived from each can deliver improved
results. In [37], a simple model called DQS was developed
using cosine functions of rebuffering-aware inputs, which was
later improved using a learned Hammerstein-Wiener system
in [12]. Only rebuffering-aware inputs were considered, using

a simple model selection strategy. Only the final values of
the predicted time series were used to assess performance.
As we will explain later, time series evaluation metrics need
to take into account the temporal structure of the data. To
the best of our knowledge, the only approach to date that
combines perceptual VQA model responses with rebuffering
measurements is described in [9], where a simple non-linear
autoregressive with exogenous variables (NARX) model was
deployed to predict continuous QoE.

A limitation of previous QoE prediction studies has been
experimental validation carried out only on a single dynamic
model on a single subjective database. Since predictive models
designed or learned and tested a specific dataset run the risk of
inadvertant “tailoring” or overtraining, deploying more general
frameworks and evaluating them on a variety of different
datasets is a difficult, but much more valuable proposition.
We also believe that insufficient attention has been directed
towards how to properly apply evaluation metrics to time series
prediction models. Optimal model parameters can significantly
vary across different test videos; hence carefully designed
validation strategies for model selection are advisable. In
addition, it is possible to better generalize and improve QoE
prediction performance by using forecast ensembles that filter
out spurious forecasts. Finally, previous studies of continuous
QoE have not investigated the limits of QoE prediction per-
formance against human performance; calculating the upper
bounds of QoE model execution is an exciting and deep
question for QoE researchers.

To sum up, previous research studies on the QoE problem
have suffered from at least one, and usually several, of the
following limitations:

1) including either quality or rebuffering aware inputs
2) relying on a single type of dynamic network
3) limited justification of model selection
4) using evaluation metrics poorly suited for time series

comparisons
5) limited evaluation on a single video QoE database
6) do not exploit time series ensemble forecasts
7) do not consider the optimal, continuous-time human

performance
Our goal here is to surmount 1-7, to further advance efforts

to create efficient, accurate and real-time QoE prediction
models that can be readily deployed to perceptually optimize
streaming video network parameters.

III. DESIGNING GENERAL CONTINUOUS-TIME QOE
PREDICTORS

In our search for a general and accurate continuous-time
QoE predictor, we realized that subjective QoE is affected by
the following:

1) Visual quality: low video quality (e.g. at low bitrates) or
bandwidth-induced fluctuations in quality [15] may cause
annoying visual artifacts [13], [14] thereby affecting
subjective QoE.

2) Playback interruption: frequent or long rebuffering events
adversely affect subjective QoE [33]. Compared to degra-
dations on visual quality, rebuffering events have remark-
ably different effects on subjective QoE [15].
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3) Memory (or hysteresis) effects: Recency [15], [38] is
a phenomenon whereby current QoE is more affected
by recent events. Primacy occurs when QoE events that
happen early in a viewing session are retained in memory,
thereby also affecting the current sense of QoE [39].

Broadly, subjective QoE “is a non-linear aggregate of video
quality, rebuffering information and memory” [9]. Recently,
the learning-driven Video ATLAS model [36] proposed to
combine these different sources of information to predict
QoE in general streaming environments where rebuffering
events and video quality changes are commingled. However,
that model is only able to deliver overall (end) QoE scores.
Towards solving the more difficult continuous-time QoE pre-
diction problem, the following points should be considered:
(a) At least three types of “QoE-aware inputs” must be fused:

VQA model responses, rebuffering measurements and
memory effects.

(b) These inputs should have high descriptive power. For
example, high-performance, perceptually-motivated VQA
models should be preferred over less accurate indicators
such as QP values [40] or PSNR. QoE-rich information
can reduce the number of necessary inputs and boost the
general capabilities of the QoE predictor.

(c) Dynamic networks with memory are able to capture re-
cency (or memory) which is an inherent property of QoE.

(d) These dynamic networks should have an adaptive structure
allowing for variable numbers of inputs. For example,
applications where videos are afflicted by rebuffering
events are not always relevant.

(e) Multiple forecasts may be combined to obtain robust
forecasts when monitoring QoE in difficult, dynamically
changing real-world video streaming environments.

An outcome of our work is a promising tool we call the
General NARX (GN) QoE predictor. In the following sections,
we motivate and explain the unique features of this new
method.

IV. THE GN-QOE PREDICTOR

A. QoE-Aware Inputs

The proposed GN-QoE Predictor relies on a non-linear
dynamic approach which integrates the following continuous-
time QoE-aware inputs:

1) ST-RRED is used as the VQA model. Previous studies
[9], [15], [36], [41], have shown that ST-RRED is an
excellent indicator of video quality. As was done in [10],
it is straightforward to augment the GN-QoE Predictor
by introducing additional QoE-aware inputs, if they ver-
ifiably contribute QoE prediction power. At the same
time, we recognize that simple and efficient models are
desireable in practical settings, especially ones that can
be adapted to different types of available side video-
information.

2) We define a boolean continuous-time variable R1 which
describes the playback status at time t which takes value
R1 = 1 during a rebuffering event and R1 = 0 at all other
times. This input captures playback-related information.
We also define the integer measure R2 to be the number

of rebuffering events that have occurred until time t.
3) M : the time elapsed since the latest network-induced

impairment such as a rebuffering event or a bitrate change
occurred. M is normalized to (divided by) the overall
video duration. This input targets recency/memory effects
on QoE.

Figure 1 shows a few examples of these continuous-time inputs
measured on videos from various subjective databases.

B. NARX Component

The GN-QoE Predictor relies on the non-linear autoregres-
sive with exogenous variables (NARX) model [9], [42], [43].
The NARX model explicitly produces an output yt that is
the result of a non-linear operation on multiple past inputs
(yt−1, yt−2, . . . ) and external variables (ut):

yt = f(yt−1, yt−2, ..., yt−dy
,ut,ut−1,ut−2, ...,ut−du

) (1)

where f(·) is a non-linear function of previous inputs
{yt−1, yt−2, ..., yt−dy

}, and previous (and current) external
variables {ut,ut−1,ut−2, ...,ut−du

}, where dy is the number
of lags in the input and du is the number of lags in the external
variables.

In a NARX model, there are two types of inputs: past
outputs that are fed back as future inputs to the dynamic
network, and external (or “exogenous”) variables (see Fig.
1). The former are scalar past outputs of the NARX model,
while the latter are past and current values of QoE-related
information, e.g. the video quality model responses, and can
be vector valued. To illustrate this, Fig. 2 shows an example of
the NARX architecture: there are three exogenous inputs u(t),
each containing a zero lag component and five past values. By
contrast, past outputs cannot contain the zero lag component.

The function f(·) is often approximated by a feed-forward
multi-layer neural network [44] possibly having variable num-
ber of nodes per hidden layer. Here we focus on single-hidden
layer architectures having H hidden nodes. There are two
approaches to training a NARX model. The first approach is to
train the NARX without the feedback loop, also known as an
open-loop (OL) configuration, by using the ground truth values
of yt when computing the RHS of (1). An example of the
ground truth scores is shown in Fig. 3. The second approach
uses previous estimates of yt, also known as a closed-loop
(CL) configuration [10]. Both approaches can be used while
training; however, application of the NARX must be carried
out in CL mode, since ground truth subjective data is not
available to define a new time series. The advantages of the
OL approach are two-fold: the actual subjective scores are used
when training, and the network to be trained is feed-forward;
hence static backpropagation can be used [45].

It has been shown [10] that, in practice, the CL configuration
requires longer training times and yields worse predictive
performance; hence we use the OL configuration when training
and the CL configuration only when testing. An example of
the CL configuration of the NARX model is shown in Fig. 2.
For simplicity, we used a tangent sigmoid activation function
and a linear function in the output layer. The role of the linear
function is to scale the outputs in the range of the subjective
scores, while the sigmoid activation function combines past
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Fig. 1: Examples of the proposed continuous time QoE variables measured on videos from all of the considered databases.
Left to right: ST-RRED computed on video #72 of the LIVE-NFLX Video QoE Database (denoted by D3), and R1 and M
on the LIVE Mobile Stall Video Database-II (denoted by D2).

inputs and external variables in a non-linear fashion. Given
that the problem is of medium size, we chose the Levenberg-
Marquardt [46], [47] algorithm to train the model [48]. To
reduce the chances of overfitting in the OL training step, we
used an early stopping approach [49]: the first 80% of the
samples were used to train the OL NARX, while the remaining
20% were used to validate it.

Fig. 2: The dynamic CL NARX system with 3 inputs, 8
neurons in the hidden layer and 5 feedback delays. Note that
the recurrency of the NARX occurs in the output layer [45].

The GN-QoE Predictor follows a learning-driven approach
which requires careful validation and design. However, pre-
liminary experiments led us to the conclusion that a single
time series prediction may be insufficient for the challenging
problem of continuous-time QoE prediction. Next, we describe
another unique feature of the GN-QoE Predictor: the use of
forecasting ensembles.

V. FORECASTING ENSEMBLES

A. Motivation

Ensemble learning is a long-standing concept that has been
widely applied in such diverse research fields as forecasting
[50], [51] and neural network ensembles [52], [53]. We are
specifically interested in time series forecasting ensembles,
where two or more continuous QoE predictions are aggregated.
In our application, we utilize a variety of dynamic approaches
that have various parameters, such as the number of input
delays. The results of these models may also depend on the
network initialization. Generally, relying on a single model
may lead to drawbacks such as:

1) Uncertain model selection. For example, in the stationary
time series and ARMA literature [7], [8], model order
selection typically relies on measurements of sample
autocorrelations or on the Akaike Information Criterion.
However, in neural network approaches, this problem is
not as well-defined.
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Fig. 3: Exemplar subjective QoE scores on video #10 from
the LIVE HTTP Streaming Video Database (denoted by D1).

2) Using validation for model selection may not always
be the best choice. Different choices of the evaluation
metric against which the QoE predictor is optimized may
yield different results. Furthermore, an optimal model
for a particular data split may not be suitable for a
different test set. While much larger QoE databases could
contribute towards ameliorating this issue, the barriers
to creating these are quite formidable, suggesting multi-
modal approaches as an alternative way to devise effective
and practical solutions.

3) The QoE dynamics within a given test video may vary
in complex ways, reducing the effectiveness of a single
model order.

Since a single time series predictor might yield subpar predic-
tion results, we have developed ensemble prediction models
that deliver more robust prediction performance by deempha-
sizing unreliable forecasts. These ensemble techniques were
applied to each of the forecasts generated. For example, testing
the GN-QoE using κ different combinations of model orders
du and dy , λ different network initializations and µ possible
values for the neurons in the hidden layer, produces κλµ
forecasts which are then combined together yielding a single
forecast.

B. Proposed Ensemble Methods

We have developed two methods of combining different
QoE predictors. The first determines the best performer from
a set of candidate solutions. We relied on the dynamic time
warping (DTW) distance [54] which measures the similar-
ity between two time series that have been time-warped to
optimally match structure over time: a larger DTW distance
between two time series signifies they are not very similar. The
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benefit of DTW is that it accounts for the temporal structure
of each time series and that it makes it possible to compare
signals that are similar but for rebuffering-induced delays.
We computed pairwise DTW distances between all predictors,
thereby producing a symmetric matrix of distances D = [dij ],
where dij = dji is the DTW distance between the ith and jth
time series predictions. Similar to the subject rejection method
proposed in [15], we hypothesize that νi =

∑
j

Dij , i.e., the

sum across rows (or columns) of D is an effective measure of
the reliability of the ith predictor. A natural choice is

io = argmin
i

νi, (2)

where io denotes the single best predictor. Note that io may not
necessarily coincide with the time series prediction resulting
from the best model parameters (as derived in the validation
step). The second approach is to assign a probabilistic weight
to each of the C candidate predictors, i.e.

ỹt =

C∑
c=1

wcŷct, wc =
1/νc∑
c
1/νc

, (3)

where wc ∈ [0, 1] determines (weights) the contribution of
the cth predictor to the ensemble estimate ỹt. Along with
these two ensemble methods, we also evaluated several other
commonly used ensemble methods, including mean, median
and mode ensembles. Mean ensembles have proven useful in
many forecasting applications [55], while median and mode
ensembles are more robust against outliers [56].

VI. THE G- FAMILY OF QOE PREDICTORS

The GN-QoE Predictor is versatile and can exploit other
VQA inputs than the high performance ST-RRED [41]. Indeed,
it allows the use of any VQA model (FR, RR or NR),
depending on the available reference information. As in [9],
[36], this enables the deployment of these models in a wide
range of QoE predictions applications.

Taking this a step forward, we have developed a wider
family of predictors based on the ST-RRED, R1 and M
inputs, that also deploy other dynamic network approaches.
For example, Layer-Recurrent Neural Networks (denoted here
as RNNs) [57] or the Hammerstein-Wiener (HW) dynamic
model [11], [12] can be used instead of NARX, yielding
GR-QoE and GH-QoE models. This general formulation also
allows us to consider model subsets that relate and generalize
previous work. For example, the GH-QoE model, when using
only ST-RRED as input (denoted by VH in Table I) may
be considered as a special case of [11]. We summarize the
proposed family of G-predictors and other predictors that use
subset of these inputs, and their characteristics in Table I. Since
the same QoE features are shared across GN-, GR- and GH-
QoE, we next discuss the learning models underlying GR-QoE
and GH-QoE.

A. Learning GR-QoE

Recurrent Neural Networks (RNNs) [57] have recently
gained popularity due to their successful applications to var-
ious tasks such as handwriting recognition [58] and speech

TABLE I: Summary of the various compared QoE predictors.
X denotes that the predictor in the row possesses the property
described in the column. We have found that including R2 in
the G- predictors produces no additional benefit.

QoE Predictor Learner VQA R1 R2 M ensemble
VN NARX X X
RN NARX X X X

RMN NARX X X X X
GN NARX X X X X
VR RNN X X
RR RNN X X X

RMR RNN X X X X
GR RNN X X X X
VH HW X X
RH HW X X X

RMH HW X X X X
GH HW X X X X

recognition [59]. The main difference between the NARX and
RNN architectures, is that while the former uses a feedback
connection from the output to the input, RNNs are feedfor-
ward neural networks that have recurrent connections in the
hidden layer. Therefore, the structure of an RNN allows it to
dynamically respond to time series input data. An example of
the network is shown in Fig. 4.

Fig. 4: The dynamic RNN approach with 1 input, 8 neurons in
the hidden layer and 5 layer delays. Note that the recurrency
of the RNN occurs in the hidden layer rather than in the output
layer [45].

Given that the amount of available subjective data is insuf-
ficient to train a deep network, we decided to train relatively
simple RNN networks, i.e., networks having only one hidden
layer and up to 5 layer delays. As in NARX, we used a tangent
sigmoid activation function and a linear function at the output
layer.

B. Learning GH-QoE

Unlike the NARX and RNN models, the HW model, which
is block-based (see Fig. 5), has only been deployed for QoE
prediction on videos afflicted by rate drops [11] or rebuffering
events [12]. The HW structure is relatively simple: a dynamic
linear block having a transfer function with nf poles and nb
zeros, preceded and followed by two non-linearities.

Fig. 5: The HW dynamic approach.

The family of G- QoE predictors (see Table I) can be
applied to any subjective database containing videos afflicted
by quality changes, rebuffering events or both, by simply
choosing the model (QoE feature) subset that is applicable
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to each case. Following our G- notation, we also define
predictors V- (which use only VQA model responses), R-
(only rebuffering features) and RM- (rebuffering and memory).
We next describe the various subjective datasets we used to
evaluate the various approaches.

VII. EXPERIMENTAL SETUP

A. Subjective Video QoE Databases

In [11], a subjective video QoE database (denoted by D1

for brevity) was created containing 15 long video sequences
afflicted by quality fluctuations relevant to HTTP rate-adaptive
video streaming. This database consists of 8 different video
contents of 720p spatial resolution encoded at various H.264
bitrate levels, with associated time-varying subjective scores.
Rebuffering events were studied in [60] using a different
database (denoted by D2), where diverse rebuffering patterns
were inserted into 24 different video contents of various spatial
resolutions. Unlike [11], this subjective QoE database allows
the study of rebuffering-related characteristics (such as the
number, locations and durations of the rebuffering events) and
their effects on time-varying and overall QoE. A total of 174
distorted videos are part of this database.

A deficiency of these early studies is that they were not
driven by any bandwidth usage models and did not con-
tain videos containing both rebuffering events and quality
variations. In realistic streaming applications, dynamic rate
adaptations and rebuffering events occur, often in temporal
proximity depending on the client device’s resource allocation
strategy [4]–[6]. Towards bridging this gap, we built the new
LIVE-NFLX Video QoE Database [15] (D3). This database
contains about 5000 continuous and retrospective subjective
QoE scores, collected from 56 subjects on a mobile device. It
was designed based on a bandwidth usage model, by applying
8 distortion patterns on 14 spatio-temporally diverse video
contents from the Netflix catalog and other publicly available
video sources. These impairments consist of constant and/or
dynamic rate drops commingled with rebuffering events. Ex-
amples of test videos from all three databases are shown in
Fig. 6.

B. Validation Framework

Next we discuss our validation scheme. Notably, the pro-
posed recurrent models are highly non-linear; hence the tradi-
tional time series model estimation techniques used in ARMA
models [7] are not possible. Further, subjective QoE prediction
is highly non-stationary; therefore the most suitable model
order may vary within a given QoE time series or across dif-
ferent test time series. As a result, determining the best model
parameters, e.g., the input and feedback delays in the GN-
QoE model (du and dy), the number of poles (nf ) and zeros
(nb) in the transfer function of a GH model, or the number of
layer delays (LD) in a GR model, must be carefully validated
(see Table II). However, the non-deterministic nature of these
time series predictions adds another layer of complexity. As
an example, given a set of QoE time series used for training or
validating, we have found that different initial weights produce
different results for GN and GR QoE Predictors. As a result,
the performance of both the GN and GR QoE Predictors

should be estimated across initializations. By comparison,
previous continuous-time QoE prediction models [9], [11],
[12] have used a single model order.

Here we propose a novel validation framework that is suit-
able for streaming video QoE prediction. This idea builds on a
simpler approach that was introduced in [10]. Let i = 1 . . . N
index the video in a given subjective database containing N
videos. First, randomly select the ith video as the test time
series. To avoid content and other learning biases, remove from
the training set all videos having similar properties as the test
video, such as the same video content. Depending on which
subjective database is used, we applied the following steps.
From the LIVE-NFLX dataset, we removed all videos having
either the same content or the same distortion pattern [9]. From
the other two databases, we removed all videos having the
same content. This process yielded a set of training QoE time
series for each test video.

Next, we further divided the training set further into a
second training set and a validation set for testing. This step
was repeated r times to ensure sufficient coverage of the data
splitting. We also found that the HW component of the GH-
QoE model was sensitive to the order of the training data in
a given training set. To account for this variation, we also
randomized the order of the time series in this second training
set. Then, we evaluated each model configuration on every
validation set, and averaged the RMSE scores, yielding a
single number per model configuration. The model parameters
that yielded the minimum RMSE were selected to be the ones
used during the testing stage. When testing, we used all of the
training data and the optimized model parameters that were
selected in the validation step. To account for different weight
initializations, we repeated the training process T times; then
averaged the performances across initializations.

TABLE II: Parameters used in our experiments. On all three
databases we fixed r = 3 and T = 5. K can be any of
the following three: G, V or RM depending on the subjective
database that the predictors were applied.

Network KN KR KH
parameter du dy H LD H nb nf H

D1 [10,12,14] [10,12,14] [5,8] [3,4,5] [5,8] [10,12,14] [10,12,14] 10
D2 [4,5,6] [4,5,6] [5,8] [3,4,5] [5,8] 4 4 10
D3 [8,10,15] [8,10,15] [5,8] [3,4,5] [5,8] [8,10,15] [8,10,15] 10

C. Evaluation Metrics

After performing the time series predictions, it is necessary
to select suitable evaluation metrics to compare the output
p with the ground truth time g. In traditional VQA, e.g, in
[20] and in hybrid models of retrospective QoE [35], [36], the
Spearman rank order correlation coefficient (SROCC) is used
to measure monotonicity, while Pearson’s Linear Correlation
Coefficient (PLCC) is used to evaluate the linear accuracy
between the ground truth subjective scores and the VQA/QoE
predicted scores. These evaluation metrics have also been used
in studies of continuous-time QoE prediction [10]–[12].

Yet, it is worth asking the question: “Is there a single evalu-
ation metric suitable for comparing subjective continuous-time
QoE scores?” We have found that each evaluation metric has
its own merits; hence they have to be considered collectively.
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Fig. 6: Exemplar videos from the three QoE databases used in the experiments on: (a). LIVE HTTP Streaming Video Database,
(b). LIVE Mobile Stall Video Database-II, (c). LIVE-NFLX Video QoE Database.

We now discuss the advantages and shortcomings of the
various evaluation metrics that can be used to compare a
ground truth QoE time series g and a predicted QoE waveform
w. Continuous-time subjective QoE is inherently a dynamic
system with memory; hence we have developed continuous-
time autoregressive QoE models. However, SROCC and PLCC
are only valid under the assumption that the samples from
each set of measurements were independently drawn from
within each set; whereas subject QoE contains strong time
dependencies and inherent non-stationarities.

There are other evaluation metrics that are more suitable
for time series comparisons, e.g., the root mean squared error
(RMSE), which captures the overall signal fidelity, and the
outage rate (OR) [11], which measures the frequency of
occurrence of the predicted values falling outside twice the
confidence interval of g. Since we are interested in capturing
QoE trends, the dynamic time warping (DTW) distance could
also be employed [9], [15], [54]. Each of these metrics has
shortcomings:

1) The RMSE is able to capture the scale of the predicted
output, but cannot account for the temporal structure.

2) The OR is intuitive and suitable for continuous-time
QoE monitoring, but does not give information on how
the predicted time series behaves within the confidence
bounds.

3) The DTW captures temporal trends, but the DTW dis-
tance is hard to interpret, e.g., a smaller distance is always
better but a specific value is hard to interpret.

We demonstrate these deficiencies in Figs. 7, 8 and 9. Figure
7 shows that the outage rate on the left is lower; however the
predicted QoE is noisy. By contrast, while the predicted QoE
on the right has a larger OR, it is more stable and it appears
to track the subjective QoE more accurately. Figure 8 shows
that, while the DTW distance between the two time series
predictions is very different, both predictions nicely capture
the QoE trend. Lastly, while RMSE captures the correct QoE
range, an artificially generated time series containing a zero
value performs better than the temporal prediction but misses
all of the trends (see Fig. 9). Clearly, any single evaluation
metric is likely to insufficiently descriptive of performance;
hence we report all three of these metrics, along with the
SROCC to draw a clearer picture of relative performance.

D. Continuous-time Performance Bounds

While the previously discussed evaluation metrics can be
used to compare QoE predictors, they do not yield an absolute
ranking against the putative upper bound of human perfor-

mance. As stated in [13]: “The performance of an objective
model can be, and is expected to be, only as good as the
performance of humans in evaluating the quality of a given
video.” We measured the “null” (human) level of performance
as follows. We divided the subjective scores of each test video
into two groups of the same size, one considered as the training
set and the other as the test set. Let Ai and Bi be the two
sets, i.e., Ai is the train set for the ith test video and Bi

the corresponding test set. For a given evaluation metric, we
averaged the subjective scores in Ai and Bi and compared
them. To account for variations across different splits, this
process was repeated S times per test video, yielding subsets
Ais and Bis at each iteration s. We fixed S = 10. Then,
we computed the median value over s, yielding the bound
on prediction performance of the ith test video. Finally, to
obtain a single bound performance over a given database, we
calculated the median value over all test videos.

(a) OR = 5.9028 (b) OR = 13.1944

Fig. 7: Vertical axis: QoE; horizontal axis: time. OR is
an intuitive metric; but it does not adequately describe the
prediction error behavior between the confidence bounds.

(a) DTW = 2.9571 (b) DTW = 19.5554

Fig. 8: Vertical axis: QoE; horizontal axis: time. DTW better
reflects the temporal trends of the prediction error although it
is harder to interpret.

E. Inputs of Different Length

An important consideration when implementing the pro-
posed model, is accounting for different input durations. For
example, while video quality predictions are computed on all
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TABLE III: Median performance metrics for the class of V- QoE predictors on database D1. The best result per evaluation
metric for each dynamic network is in boldface.

Network Type VN VR VH
Model/Metric RMSE OR DTW SROCC RMSE OR DTW SROCC RMSE OR DTW SROCC

NIQE [28] 8.6113 34.7917 29.7234 0.5439 9.7064 42.8378 49.4228 0.3273 8.9473 42.7778 55.8639 0.2710
PSNR 6.7613 25.0694 24.3740 0.7172 8.1003 36.1616 35.5527 0.5561 7.1937 29.5105 37.4949 0.6669

VMAF [25] 4.9518 12.3776 17.7980 0.8909 6.4212 24.0541 27.8561 0.7300 6.4390 23.0345 27.4229 0.8076
MS-SSIM [61] 4.0672 5.7343 15.8909 0.9057 5.7919 17.6431 23.6744 0.7325 7.4958 31.8182 44.8634 0.5886

SSIM [62] 4.0224 5.4545 14.2184 0.8951 6.0686 17.4324 24.1329 0.7406 7.3203 30.6897 41.7781 0.6722
ST-RRED [26] 4.2451 5.9028 15.2087 0.9044 6.9833 20.8136 27.2188 0.7059 5.3953 15.3103 27.0865 0.8658

(a) RMSE = 0.3627 (b) RMSE = 0.3294

Fig. 9: Vertical axis: QoE; horizontal axis: time. RMSE
effectively captures the overall signal fidelity; but it does not
effectively account for the local temporal structure of the
prediction error.
frames of normal playback [9], the R1 input (in the presence
of rebuffering events) will have longer durations. While it is
possible to train and evaluate the GN and GR QoE Prediction
models without imputing missing VQA response values during
rebuffering events, we found it useful to develop an imputation
scheme that defines same-sized inputs for each test video. In
previous studies, playback interruption has been found to be
at least as annoying as very low bitrate distortions [15]; hence
we selected imputed VQA values corresponding to very low
video quality. Imputing with zeros is not a good idea; some
video quality models never approach such low values while
others (such as ST-RRED) correspond lower values to better
video quality. For simplicity, we picked the min (or the max)
value of the video quality prediction corresponding to the
worst quality level encountered over the entire video as the
nominal VQA input value during playback interruptions. To
recognize causality, we could also pick the min (or max) VQA
values up until the rebuffering event occurs; we found that this
did not greatly affect the final results. This imputing step is
required only on the LIVE-NFLX dataset.

VIII. EXPERIMENTAL RESULTS

In this section, we thoroughly evaluate and compare be-
tween the different approaches. Recall that only database
D3 contains both quality changes and playback interruptions;
hence we applied the V- predictors on D1, the RM- predictors
on D2 and the G- predictors on D3.

A. Qualitative Experiments

We begin by visually evaluating the different models on a
few videos from all three QoE databases. Figure 10 shows
the performance of the VN-QoE Predictor on video #8 of
database D1; the continuous time predictions of the best cross-
validated model closely follow the subjective QoE, and all
models yielded similar outputs. In such cases, it may be that
forecasting ensembles yield little benefit.
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Fig. 10: The VN-QoE Predictor on video #8 of database D1.
Left: prediction using the best cross-validated model; right:
predictions from all the models.
TABLE IV: Wilcoxon significance test [63] (using significance
level α = 0.05) on various VQA models applied on database
D1 when the OR metric was used to assess the VN-QoE
Predictor. A value of ‘1’ indicates that the row is statistically
better than the column, while a value of ‘0’ indicates that
the row is statistically worse than the column; a value of ‘-’
indicates that the row and column are statistically equivalent.
Similar results were produced by the other evaluation metrics.

Model NIQE PSNR VMAF MS-SSIM SSIM ST-RRED
NIQE - 0 0 0 0 0
PSNR 1 - 0 0 0 0
VMAF 1 1 - - 0 0

MS-SSIM 1 1 - - - -
SSIM 1 1 1 - - -

ST-RRED 1 1 1 - - -

By contrast, Fig. 11 shows QoE prediction on video #16
of database D2. All three dynamic approaches suffered either
from under- or over-shoot. The RMR-QoE Predictor produced
some spurious forecasts. In this instance, an ensemble method
could increase the prediction reliability. However, in this
example, the RMH-QoE Predictor performed well.

The example in Fig. 12 proved challenging for both the GN-
and GR-QoE Predictors: the best cross-validated GN model
was unable to capture the subjective QoE trend, while the
GR model produced an output that did not capture the first
part of the QoE drop. These examples highlight some of the
challenges of the problem at hand: finding the best network
model can be difficult. By contrast, the GH model was able
to produce a much better result. Notably, all three dynamic
approaches suffered from spurious forecasts, again suggesting
that forecasting ensembles could be of great use.

B. Quantitative Experiments - D1

We begin our quantitative analysis by discussing the pre-
diction performances of the compared QoE prediction models
(class V-) on the LIVE HTTP Streaming Video Database (D1).
Table III summarizes the performance of all three dynamic
approaches when using leading VQA models: PSNR, NIQE
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Fig. 11: Columns 1 to 3: The RMN-, RMR- and RMH-QoE Predictors applied to video #16 of database D2. First row:
prediction using the best cross-validated model; second row: predictions from all models.
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Fig. 12: Columns 1 to 3: The GN-, GR- and GH-QoE Predictors applied on pattern #4 of database D3. First row: prediction
using the best cross-validated model; second row: predictions from all the models.

[28], VMAF (version 3.1) [25], MS-SSIM [61], SSIM [62] and
ST-RRED [26]. Unsurprisingly, NIQE performed the worst
across all dynamic approaches; but it is a no-reference frame-
based video quality metric. PSNR delivered the second worst
performance, but it does not capture any perceptual quality
information. MS-SSIM, SSIM and ST-RRED all performed
well when deployed in the VN-QoE Predictor; but when it
was inserted into the HW model, ST-RRED delivered the best
performance. We also carried out statistical validation tests,
as shown in Table IV. We found that for the VN model, the
performance differences between MS-SSIM, SSIM and ST-
RRED were not statistically significant; but all three of them
performed better than VMAF 3.1, PSNR and NIQE. These
results show that perceptual VQA models, when combined
with dynamic networks that learn to conduct continuous-time
QoE prediction, do not perform equally well; hence deploying
high performance VQA models can greatly contribute to
improved QoE prediction. Among the three compared dynamic

approaches, the VN-QoE Predictor consistently outperformed
the VR and VH models. It has been previously demonstrated
[42] that the NARX architecture is less sensitive than RNN
models when learning long-term dependencies. Notably, VH
performed poorly when fed by all of the VQA models other
than ST-RRED.

We now study the efficacy of ensemble forecasting ap-
proaches. Table V shows that NARX again performed bet-
ter than the other networks across all ensemble methods.
However, using an ensemble method different than the mean
yielded results similar to the mean. This suggests that the
VN-QoE predictions were stable across different initializations
and configurations (see also Fig. 10), given that more robust
estimators such as the non-parametric mode produced results
similar to the mean ensemble which can be sensitive to
outliers. Unlike VN and VH, using better ensemble estima-
tors improved the performance of VR predictions. This may
be explained by the larger uncertainty involved in the VR
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TABLE V: Median performance metrics for various time series ensemble methods applied on the class of V- predictors on
database D1 using ST-RRED. The best result overall is in boldface. The naming convention of the ensemble methods is as
follows: “best”: pick best (from validation) model parameters when testing, “avg”: averaging of all forecasts, “med”: taking
the median of all forecasts, “mod”: estimating the mode, “DTW-single”: determining io in (2), “DTW-prob”: probabilistic
weighting of forecasts in (3).

Network Type VN VR VH
Model/Metric RMSE OR DTW SROCC RMSE OR DTW SROCC RMSE OR DTW SROCC

best 4.2451 5.9028 15.2087 0.9044 6.9833 20.8136 27.2188 0.7059 5.3953 15.3103 27.0865 0.8658
avg 3.6415 5.2448 14.1071 0.9113 4.9875 15.5932 17.6393 0.8482 4.8605 14.6853 16.7186 0.8978
med 3.6851 5.2448 14.0136 0.9110 4.2293 9.1525 16.3132 0.8980 4.8455 13.9860 16.4650 0.8957
mod 3.7551 4.5455 14.2622 0.9094 4.1696 8.4746 16.2175 0.8985 4.8216 13.9860 20.9198 0.8958

DTW-single 3.9151 5.5944 14.0136 0.8997 4.2386 8.8136 17.0555 0.8953 5.0198 15.0350 18.5177 0.8898
DTW-prob 3.6727 5.2448 14.1049 0.9111 4.1989 10.5085 16.3487 0.8938 4.8414 14.6853 16.7181 0.8960

predictions. Notably, determining the single best predictor
using DTW in eq. (2) performed better than the predictions
based on the “best” model parameters during validation. This
verifies our earlier observation: the optimal model may vary
over different data splits. The probabilistic weighting scheme
in eq. (3) delivered performance that was competitive with
other ensemble methods such as the median. Given that this
scheme is also non-parametric and data-driven, these results
are encouraging.

C. Quantitative Experiments - D2

Next, we discuss our results on LIVE Mobile Stall Video
Database-II (D2) (see Table VI). Overall, the NARX learner
again produced the best results. The RMN-QoE Predictor out-
performed both the RMR and RMH-QoE Predictors. Notably,
using ensemble methods greatly improved OR (by more than
10% for both the RMR and RMH models), DTW and SROCC
across all dynamic network approaches. Using an ensemble
method other than the mean led to a drop of OR by almost
5% in the case of the RMR-QoE Predictor. The DTW-based
probabilistic weighting scheme further improved the RMH-
QoE Predictor’s prediction performance. Note that an outage
rate of 0 does not mean that the prediction is perfect; it only
indicates that the ensemble predictions were within two times
the confidence interval.

Using the previous results, we were able to compare among
different objective metrics. Following the steps described in
Section VII-D, we compared the best performing combination
(RMN-QoE Predictor) against the upper bound, i.e., human
performance, using S = 10 shuffles. Table VII shows that
the RMN-QoE Predictor outperformed both the RMR- and
RMH-QoE Predictors, and its performance in terms of RMSE
came close to the reference human performance. We found this
difference to be statistically significant; hence there is some
room for improvement. However, the performance in terms of
OR was very good when any of the ensemble methods was
considered. Surprisingly, the DTW and SROCC performances
were not always inferior to human scores, and sometimes
these differences were statistically significant. We review this
observation in Section VIII-D.

Comparing the objective prediction scores between Tables
VI and VII, we discovered that, when using only a subset
of the subjective scores as ground truth, the performance of
the objective prediction models was reduced. This may be
explained by the fact that subjects do not always agree with
each other; hence using all of the subjective scores reduces

both the objective and subjective uncertainty.
It has been shown [10] that combinations of VQA inputs

(e.g. ST-RRED combined with SSIM) can deliver improved
results. Here we investigate this claim by studying the effects
of using different combinations of rebuffering-related inputs.
We selected NARX as the network architecture and performed
QoE predictions using a number of inputs ranging from one
to three, as shown in Table VIII. We also used the parameters
from Table II. Notably, we found that only using the R1 input
contributed significantly greater prediction power than R2 and
M ; it is capable of effectively capturing rebuffering effects
and is suitable for being used alone in the GN-, GR- and GH-
prediction models. Combining all three inputs improved the
OR by only 2%. This suggests that R1 is an efficient descriptor
of the effects of rebuffering events on QoE.

TABLE VIII: Median performance metrics for various
continuous-time feature sets on D2 when using the NARX
learner. Note that using features R1+R2 defines the RN-QoE
Predictor while R1+R2+M gives the RMN-QoE Predictor.
The best result per evaluation metric is in bold.

Network NARX
Features/Metric RMSE OR DTW SROCC

R1 4.6529 9.0333 4.0030 0.9374
R2 8.3789 31.1519 7.2924 0.8216
M 6.7418 23.1209 6.3926 0.8208

R1+R2 4.4114 8.1367 4.0149 0.9469
R1+M 4.8595 12.1199 4.2619 0.9177
R2+M 6.4060 21.5301 6.1705 0.8405

R1+R2+M 4.4928 6.8439 4.0751 0.9268

Note that when tested on databases D1 and D2, the predic-
tion performance of the proposed dynamic approaches was
promising; especially when the predictions were combined
in an ensemble. However, neither of these databases models
both rebuffering events and video quality changes. In the
next subsection, we explore the prediction performance of the
studied QoE prediction models on the more challenging QoE
database D3.

D. Quantitative Experiments - D3

We investigated the performance of ensemble methods on
the class of G- predictors applied on the more complex prob-
lem of QoE prediction when both rate drops and rebuffering
occur (see Table IX) by using database D3. We found that
overall, the GH-QoE Predictor performed better than the
GN-QoE Predictor, while the GR-QoE Predictor lagged in
performance. It is likely that more hidden neurons would
enable the GN and GR models to perform better. Overall, all
forecasting ensembles greatly improved the performance of all
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TABLE VI: Median performance metrics for various time series ensemble methods applied on the class of RM- predictors on
database D2. The best result per evaluation metric is in boldface.

Network Type RMN RMR RMH
Model/Metric RMSE OR DTW SROCC RMSE OR DTW SROCC RMSE OR DTW SROCC

best 4.4928 6.8439 4.0751 0.9268 6.3343 21.0842 5.7353 0.8897 5.6628 16.2211 9.0351 0.7526
avg 4.0087 0.0000 2.9912 0.9689 5.5937 11.4835 3.8338 0.9494 4.2038 3.7050 5.4336 0.8808
med 3.8806 0.0000 2.9338 0.9655 5.3789 6.6156 3.1905 0.9632 3.7896 4.2892 5.7285 0.8708
mod 3.9249 0.0000 3.0279 0.9618 5.3419 7.5962 3.2318 0.9600 3.8766 4.0270 5.6462 0.8599

DTW-single 4.1542 0.0000 3.0277 0.9661 5.3938 7.2500 3.3605 0.9517 3.9885 3.8839 6.8397 0.8579
DTW-prob 3.9066 0.0000 2.9589 0.9681 5.3280 7.2500 3.3126 0.9644 4.0471 3.3761 5.1034 0.8839

TABLE VII: Median performance metrics for various time series ensemble methods applied on the class of RM- predictors
on database D2 - direct comparison with human performance. The best result is in boldface.

Network Type RMN RMR RMH
Model/Metric RMSE OR DTW SROCC RMSE OR DTW SROCC RMSE OR DTW SROCC

best 4.9035 2.1376 4.7538 0.9102 6.4582 7.1004 6.3780 0.8666 6.0270 7.7637 9.7567 0.7462
avg 4.3345 0.0000 3.8451 0.9456 5.7435 2.1315 4.5460 0.9327 4.6125 1.3333 5.8474 0.8671
med 4.4583 0.0000 3.7086 0.9433 5.5579 1.0784 3.8582 0.9461 4.3935 1.3514 6.2293 0.8580
mod 4.3294 0.0000 3.7929 0.9410 5.4830 1.0531 3.9363 0.9439 4.4064 1.3333 6.3676 0.8501

DTW-single 4.5501 0.0000 4.0212 0.9422 5.6212 1.3260 3.9958 0.9378 4.5213 1.1303 7.6111 0.8402
DTW-prob 4.4013 0.0000 3.7769 0.9459 5.6201 1.1766 3.9615 0.9461 4.5650 1.1629 5.7202 0.8716

ref 3.9060 0.0000 4.6007 0.9338 3.9060 0.0000 4.6007 0.9338 3.9060 0.0000 4.6007 0.9338

dynamic networks.
As before, we also report the results compared against

human performance in Table X. We drew similar observations
as in Table VII: the objective predictions tend to get worse
while human performance usually upper bounds model perfor-
mance. However, it is intriguing that combining the different
GH-QoE forecasts delivered RMSE scores better than human
performance - a difference which we found to be statistically
significant. When objective prediction models are trained
on subjective data, human performance should generally be
superior to or at least statistically equivalent to objective
predictions. However, this upper bound may be violated when
we consider post-processed forecasting ensembles: human
performance is the upper bound only on time series predictions
generated by an individual model. Our observation may be
explained by the design of these two QoE databases. Database
D2 includes only rebuffering events, while D3 involves a
mixture of rebuffering and compression; a task that is even
more challenging for human subjects. Therefore, the difficulty
of the tasks may increase subjective uncertainty per test video;
an uncertainty for which simple averaging of the continuous
scores across subjects may not always be the best method
of aggregating them. This reinforces our growing belief that
simply averaging continuous QoE responses disregards the
inherent non-linearities in these responses [15].

E. Quantitative Experiments - Activation Function, Training
Algorithm

We also tested various activation functions: logistic sigmoid
(logsig), hyperbolic tangent sigmoid (tansig) and linear (pure-
lin) and we also tried various combinations of them in the
hidden and the output layers. We carried out ten experiments
and computed the median OR on D1 and D2. For D1, we
used du = 10, dy = 10, a single hidden layer with 8 neurons
and ST-RRED as the VQA model. For D2, we used du = 6,
dy = 6, a single hidden layer with 8 neurons and the features
R1, R2 and M . As shown in Table XI, using tansig for the
hidden layer and purelin for the output layer proved to be
good choices (in terms of OR) for this task on both databases.
Similar results were produced by other evaluation metrics.

TABLE XI: Comparison between different activation functions
when training the NARX component using OR. Rows corre-
spond to the activation function used in the hidden layer, while
columns to the activation function in the output layer on D1

(VN) and on D2 (RMN).

Database D1 (VN) D2 (RMN)
Activation tansig logsig purelin tansig logsig purelin

tansig 10.3793 20.2759 5.8966 10.5881 31.3844 7.6818
logsig 8.9655 22.5517 5.1034 10.3386 33.2626 7.9185
purelin 9.2759 31.2759 11.1034 26.0428 50.5526 5.481

We also compared the Levenberg-Marquardt algorithm
against other training algorithms [48]. Table XII shows that
using the Levenberg-Marquardt (trainlm) performed very close
to the best performing method on D1 (trainbfg) and was
significantly better on D2. This suggests that the use of a
general training algorithm such as Levenberg-Marquardt is
sufficient for QoE prediction.

F. Discussion

Combining perceptual video quality models with rebuffer-
ing event measurements and memory can deliver promising
continuous-time QoE prediction results. We found that a
simple rebuffering-related input can capture the effects of
rebuffering events and that advanced video quality metrics may
improve on the predictive performance. Among the various
design aspects of the developed predictors, the choice of the
dynamic network contributed the most in the final results.
Overall, we found that predictions using recurrent neural net-
works were unstable; hence ensemble methods turned out to be
most efficient for those cases. Both the Hammerstein-Wiener
and the NARX approaches are simple, but their performances
varied: on D1 and D2 the NARX-based predictors were better
than HW, while for D3 the HW component improved upon
NARX. Therefore, designing a successful continuous-time
QoE predictor relies heavily on choosing a suitable dynamic
model component. Notably, using ensemble prediction meth-
ods can help alleviate these dependencies by producing reliable
and more robust forecasts. However, these improvements may
not be significant if the individual forecasts are similar to each
other.
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TABLE IX: Median performance metrics for various time series ensemble methods applied on the class of G- predictors on
database D3 using ST-RRED. The best result is in boldface.

Network Type GN GR GH
Model/Metric RMSE OR DTW SROCC RMSE OR DTW SROCC RMSE OR DTW SROCC

best 0.2761 16.3109 26.5323 0.8127 0.3705 22.5546 28.5764 0.7170 0.2182 6.1912 25.4509 0.7685
avg 0.2433 8.3065 19.8192 0.8833 0.2903 14.8650 20.1141 0.8098 0.1535 0.3300 8.0770 0.9002
med 0.2386 6.6636 21.6525 0.8900 0.2873 13.8968 18.4652 0.8160 0.1084 0.0000 7.4343 0.9109
mod 0.2416 3.9183 20.5978 0.8765 0.2832 13.9032 19.2255 0.8143 0.0958 0.0000 6.9761 0.9138

DTW-single 0.2489 6.0227 19.7491 0.8915 0.2972 14.7661 21.2789 0.8199 0.1262 0.0000 12.2498 0.8716
DTW-prob 0.2380 6.5349 19.9997 0.8894 0.2871 14.3094 18.8939 0.8192 0.1203 0.0000 7.4475 0.9062

TABLE X: Median performance metrics for various time series ensemble methods applied on the class of G- predictors on
database D3 using ST-RRED - direct comparison with human scores. The best result is in boldface.

Network Type GN GR GH
Model/Metric RMSE OR DTW SROCC RMSE OR DTW SROCC RMSE OR DTW SROCC

best 0.2920 5.4823 28.3930 0.7822 0.3767 9.6446 29.5208 0.6944 0.2401 2.3664 25.5554 0.7628
avg 0.2581 0.0000 23.0780 0.8558 0.3083 3.3029 21.6328 0.7941 0.1872 0.0000 10.1901 0.8719
med 0.2451 0.0000 22.5154 0.8622 0.2997 2.2128 19.3513 0.8022 0.1492 0.0000 9.1562 0.8841
mod 0.2450 0.0000 22.0302 0.8493 0.2998 2.1736 19.9365 0.7981 0.1419 0.0000 9.2764 0.8928

DTW-single 0.2585 0.0000 19.9898 0.8595 0.3080 3.0972 21.0850 0.7956 0.1616 0.0000 13.8216 0.8467
DTW-prob 0.2468 0.0000 21.4827 0.8594 0.3012 2.3189 19.1690 0.8056 0.1585 0.0000 9.4583 0.8851

ref 0.1960 0.0000 10.7132 0.9029 0.1960 0.0000 10.7132 0.9029 0.1960 0.0000 10.7132 0.9029

TABLE XII: Comparison between different training algorithms using the NARX component on databases D1 (VN) and D2

(RMN). The number of maximum iterations was set to 1000. The best result is in boldface.

Database D1 D2

Metric RMSE OR DTW SROCC RMSE OR DTW SROCC
trainlm 3.9960 5.7241 15.3884 0.9070 4.4253 7.4647 4.1464 0.9291
trainbfg 3.8958 4.8621 14.7250 0.8995 6.3309 17.5301 6.6519 0.8134
trainrp 4.2611 7.7931 17.5826 0.8860 9.2138 29.2530 9.9632 0.7111
trainscg 4.1977 6.0345 16.5334 0.8850 6.5928 21.0884 7.2083 0.7899
traincgb 4.0063 5.3448 15.9283 0.8882 6.1350 18.3629 6.3425 0.8225
traincgf 4.2704 6.8621 16.5400 0.8837 6.1077 18.5646 6.5928 0.8212
traincgp 4.0702 5.8276 15.5916 0.8935 6.4566 21.0863 6.5722 0.8027
trainoss 4.4877 6.9655 18.1414 0.8722 7.1855 24.2692 7.2972 0.8025
traingdx 6.3337 17.7241 22.2605 0.7952 11.8730 38.4865 10.0407 0.6558

IX. FUTURE WORK

We deployed dynamic network models having simple struc-
tures, that process a small number of inputs rich in QoE-related
information and which can be easily deployed in both FR
and NR applications. We hope that this work will be useful
to video QoE researchers as they address the challenging
aspects of continuous-time video QoE monitoring. It would be
interesting to investigate possible ways of introducing more
inputs to the dynamic architectures, as in [10]. Methods of
continuous-time QoE summarization are also of interest, i.e.,
learning-driven ways of aggregating subjective continuous-
time QoE scores into a single subjective QoE score. Since,
in this way, continuous time QoE predictions would be used
as proxies for subjective QoE, we could then apply similar
pooling techniques to QoE prediction algorithms.

In our preliminary experiments, we found that when our
proposed QoE prediction engines are trained on one publicly
available database, then tested on another, they delivered poor
performance likely due to their different design, e.g., only D3

studies both rebuffering events and quality changes. This high-
lights the need for building more general and publicly available
datasets. In the future, we envision building predictive models
that exploit realistic network information extracted from the
client side, i.e., developing databases and prediction models
based on realistic network traces and bandwidth availability
patterns. Ultimately, we seek to deploy methods that can
perceptually optimize bitrate allocation and/or network and

bandwidth usage, and that can be readily deployed in large
streaming architectures.
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